projekty
/
imago.git
/ blobdiff
commit
grep
author
committer
pickaxe
?
search:
re
summary
|
shortlog
|
log
|
commit
|
commitdiff
|
tree
raw
|
inline
| side by side
conected components
[imago.git]
/
hough.py
diff --git
a/hough.py
b/hough.py
index
5fca93f
..
d01416a
100644
(file)
--- a/
hough.py
+++ b/
hough.py
@@
-1,10
+1,12
@@
-from PIL import Image
from math import sin, cos, pi
from math import sin, cos, pi
+
+from PIL import Image
+
from commons import clear
class Hough:
def __init__(self, size):
from commons import clear
class Hough:
def __init__(self, size):
- self.size = size
+
self.size = size
self.dt = pi / size[1]
self.initial_angle = (pi / 4) + (self.dt / 2)
self.dt = pi / size[1]
self.initial_angle = (pi / 4) + (self.dt / 2)
@@
-30,7
+32,8
@@
class Hough:
distance = (((x - (size[0] / 2)) * sin((dt * a) + initial_angle)) +
((y - (size[1] / 2)) * -cos((dt * a) + initial_angle)) +
size[0] / 2)
distance = (((x - (size[0] / 2)) * sin((dt * a) + initial_angle)) +
((y - (size[1] / 2)) * -cos((dt * a) + initial_angle)) +
size[0] / 2)
- column = int(round(distance)) # column of the matrix closest to the distance
+ # column of the matrix closest to the distance
+ column = int(round(distance))
if column >= 0 and column < size[0]:
matrix[column][a] += 1
if column >= 0 and column < size[0]:
matrix[column][a] += 1
@@
-48,12
+51,12
@@
class Hough:
return new_image
def all_lines(self, image):
return new_image
def all_lines(self, image):
- im_l = image.load()
- lines = []
- for x in xrange(image.size[0]):
+
im_l = image.load()
+
lines = []
+
for x in xrange(image.size[0]):
for y in xrange(image.size[1]):
for y in xrange(image.size[1]):
- if im_l[x, y]:
- lines.append(self.angle_distance((x, y)))
+
if im_l[x, y]:
+
lines.append(self.angle_distance((x, y)))
return lines
def find_angle_distance(self, image):
return lines
def find_angle_distance(self, image):
@@
-86,5
+89,5
@@
class Hough:
return [self.angle_distance(p) for p in points]
def angle_distance(self, point):
return [self.angle_distance(p) for p in points]
def angle_distance(self, point):
- return (self.dt * point[1] + self.initial_angle, point[0] - self.size[0] / 2)
-
+
return (self.dt * point[1] + self.initial_angle, point[0] - self.size[0] / 2)
+