# TODO comments
# TODO threshold
-def initial_estimate(data):
- return random.sample(data, 2)
def points_to_line((x1, y1), (x2, y2)):
return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2)
[a,c] = NP.dot(NP.linalg.inv(NP.dot(xt, x)), xt).dot(y).flat
return (a, -1, c)
-def get_model(data):
- if len(data) == 2:
- return points_to_line(*data)
- else:
- return least_squares(data)
+class Linear_model:
+ def __init__(self, data):
+ self.data = data
-def iterate(data, distance):
+ def get(self, sample):
+ if len(sample) == 2:
+ return points_to_line(*sample)
+ else:
+ return least_squares(sample)
+
+ def initial(self):
+ return random.sample(self.data, 2)
+
+def iterate(model, distance):
consensus = 0
- consensual = initial_estimate(data)
+ consensual = model.initial()
while (len(consensual) > consensus):
consensus = len(consensual)
- model = get_model(consensual)
- consensual = filter_near(data, model, distance)
- return consensus, model, consensual
+ try:
+ estimate = model.get(consensual)
+ except NP.linalg.LinAlgError:
+ pass
+ consensual = filter_near(model.data, estimate, distance)
+ return consensus, estimate, consensual
-def estimate(data, dist, k):
+def estimate(data, dist, k, modelClass=Linear_model):
+ model = modelClass(data)
best = 0
- model = None
+ estimate = None
consensual = None
for i in xrange(0, k):
- new, new_model, new_consensual = iterate(data, dist)
+ new, new_estimate, new_consensual = iterate(model, dist)
if new > best:
best = new
- model = new_model
+ estimate = new_estimate
consensual = new_consensual
- return model, consensual
+ return estimate, consensual
-def ransac_duo(data, dist, k, mk):
+def ransac_duo(data, dist, k, mk, modelClass=Linear_model):
cons = []
for i in xrange(mk):
- model, cons = estimate(set(data) - set(cons), dist, k)
- return (model, cons), estimate(set(data) - set(cons), dist, k)
+ model, cons = estimate(set(data) - set(cons), dist, k, modelClass)
+ return (model, cons), estimate(set(data) - set(cons), dist, k, modelClass)