from PIL import Image
from math import sin, cos, pi
-import os
+from commons import clear
-def clear():
- if os.name == 'posix':
- os.system('clear')
- elif os.name == ('ce', 'nt', 'dos'):
- os.system('cls')
+class Hough:
+ def __init__(self, size):
+ self.size = size
+ self.dt = pi / size[1]
+ self.initial_angle = (pi / 4) + (self.dt / 2)
-def transform(image):
+ def transform(self, image):
+ image_l = image.load()
+ size = image.size
+
+ matrix = [[0]*size[1] for _ in xrange(size[0])]
- image_l = image.load()
- size = image.size
-
- dt = pi / size[1]
- initial_angle = (pi / 4) + (dt / 2)
+ dt = self.dt
+ initial_angle = self.initial_angle
- matrix = [[0]*size[1] for _ in xrange(size[0])]
+ for x in xrange(size[0]):
+ clear()
+ print "hough transform: {0:>3}/{1}".format(x + 1, size[0])
+ for y in xrange(size[1]):
+ if image_l[x, y]:
+ # for every angle:
+ for a in xrange(size[1]):
+ # find the distance:
+ # distance is the dot product of vector (x, y) - centerpoint
+ # and a unit vector orthogonal to the angle
+ distance = (((x - (size[0] / 2)) * sin((dt * a) + initial_angle)) +
+ ((y - (size[1] / 2)) * -cos((dt * a) + initial_angle)) +
+ size[0] / 2)
+ column = int(round(distance)) # column of the matrix closest to the distance
+ if column >= 0 and column < size[0]:
+ matrix[column][a] += 1
+
+ new_image = Image.new('L', size)
+ new_image_l = new_image.load()
+
+ minimum = min([min(m) for m in matrix])
+
+ maximum = max([max(m) for m in matrix]) - minimum
- for x in xrange(size[0]):
- clear()
- print "{0}/{1}".format(x + 1, size[0])
for y in xrange(size[1]):
- if image_l[x, y]:
- # for every angle:
- for a in xrange(size[1]):
- # find the distance:
- # distance is the dot product of vector (x, y) - centerpoint
- # and a unit vector orthogonal to the angle
- distance = (((x - (size[0] / 2)) * sin((dt * a) + initial_angle)) +
- ((y - (size[1] / 2)) * -cos((dt * a) + initial_angle)) +
- size[0] / 2)
- column = int(round(distance)) # column of the matrix closest to the distance
- if column >= 0 and column < size[0]:
- matrix[column][a] += 1
-
- new_image = Image.new('L', size)
- new_image_l = new_image.load()
-
- minimum = min([min(m) for m in matrix])
-
- maximum = max([max(m) for m in matrix]) - minimum
-
- for y in xrange(size[1]):
- for x in xrange(size[0]):
- new_image_l[x, y] = (float(matrix[x][y] - minimum) / maximum) * 255
+ for x in xrange(size[0]):
+ new_image_l[x, y] = (float(matrix[x][y] - minimum) / maximum) * 255
- return new_image
+ return new_image
+
+ def all_lines(self, image):
+ im_l = image.load()
+ lines = []
+ for x in xrange(image.size[0]):
+ for y in xrange(image.size[1]):
+ if im_l[x, y]:
+ lines.append(self.angle_distance((x, y)))
+ return lines
+
+ def find_angle_distance(self, image):
+ image_l = image.load()
+
+ points = []
+
+ count = 0
+ point_x = 0
+ point_y = 0
+ for x in xrange(image.size[0] / 2):
+ for y in xrange(image.size[1] / 2, image.size[1]):
+ if image_l[x, y]:
+ count += 1
+ point_x += x
+ point_y += y
+ points.append((float(point_x) / count, float(point_y) / count))
+
+ count = 0
+ point_x = 0
+ point_y = 0
+ for x in xrange(image.size[0] / 2, image.size[0]):
+ for y in xrange(image.size[1] / 2, image.size[1]):
+ if image_l[x, y]:
+ count += 1
+ point_x += x
+ point_y += y
+ points.append((float(point_x) / count, float(point_y) / count))
+
+ return [self.angle_distance(p) for p in points]
+
+ def angle_distance(self, point):
+ return (self.dt * point[1] + self.initial_angle, point[0] - self.size[0] / 2)
+