score += min(d, dist)
return score, cons
+ def remove(self, data):
+ self.data = list(set(self.data) - set(data))
+
def iterate(model, distance):
score = float("inf")
consensual = model.initial()
estimate = model.get(consensual)
- new_score, consensual = model.score(estimate, distance)
- while (new_score < score):
- score = new_score
- try:
- estimate = model.get(consensual)
- except NP.linalg.LinAlgError:
- pass
- estimate = model.get(consensual)
- new_score, consensual = model.score(estimate, distance)
+ new_score, new_consensual = model.score(estimate, distance)
+ if new_consensual != []:
+ while (new_score < score):
+ score, consensual = new_score, new_consensual
+ try:
+ estimate = model.get(consensual)
+ new_score, new_consensual = model.score(estimate, distance)
+ except (NP.linalg.LinAlgError):
+ pass
return score, estimate, consensual
-def estimate(data, dist, k, modelClass=Linear_model):
- model = modelClass(data)
+def estimate(data, dist, k, modelClass=Linear_model, model=None):
+ if not model:
+ model = modelClass(data)
best = float("inf")
estimate = None
consensual = None
return estimate, consensual
-def ransac_duo(data, dist, k, mk, modelClass=Linear_model):
+def ransac_multi(m, data, dist, k, modelClass=Linear_model, model=None):
+ if not model:
+ model = modelClass(data)
+ ests = []
cons = []
- for i in xrange(mk):
- model, cons = estimate(set(data) - set(cons), dist, k, modelClass)
- return (model, cons), estimate(set(data) - set(cons), dist, k, modelClass)
-
+ for i in xrange(m):
+ est, cons_new = estimate(None, dist, k, model=model)
+ model.remove(cons_new)
+ ests.append((est, cons_new))
+ return ests