- clusters = k_means.cluster(3, 2,zip(color_data, range(len(color_data))),
- [[0., 0.5], [0.5, 0.5], [1., 0.5]])
-
+ init_x = sum(c[0] for c in color_data) / float(len(color_data))
+
+ clusters, score = k_means.cluster(3, 2,zip(color_data, range(len(color_data))),
+ [[0., 0.5], [init_x, 0.5], [1., 0.5]])
+# clusters1, score1 = k_means.cluster(1, 2,zip(color_data, range(len(color_data))),
+# [[0.5, 0.5]])
+# clusters2, score2 = k_means.cluster(2, 2,zip(color_data, range(len(color_data))),
+# [[0., 0.5], [0.75, 0.5]])
+# import sys
+# print >> sys.stderr, score1, score2, score
+#