from math import cos, tan, pi
from operator import itemgetter
+import colorsys
-import ImageDraw
+from PIL import ImageDraw
import filters
import k_means
import output
+import linef
def dst(line):
"""Return normalized line."""
lines.sort(key=itemgetter(1))
return lines
-def board(image, lines, show_all, do_something):
- """Compute intersections, find stone colors and return board situation."""
+def b_intersects(image, lines, show_all, do_something, logger):
+ """Compute intersections."""
# TODO refactor show_all, do_something
# TODO refactor this into smaller functions
+ logger("finding the stones")
lines = [dst_sort(l) for l in lines]
+ an0 = (sum([l[0] for l in lines[0]]) / len(lines[0]) - pi / 2)
+ an1 = (sum([l[0] for l in lines[1]]) / len(lines[1]) - pi / 2)
+ if an0 > an1:
+ lines = [lines[1], lines[0]]
+
intersections = intersections_from_angl_dist(lines, image.size)
if show_all:
draw.point((x , y), fill=(120, 255, 120))
do_something(image_g, "intersections")
- image_c = filters.color_enhance(image)
- if show_all:
- do_something(image_c, "white balance")
+ return intersections
+
+def board(image, intersections, show_all, do_something, logger):
+ """Find stone colors and return board situation."""
+
+# image_c = filters.color_enhance(image)
+# if show_all:
+# do_something(image_c, "white balance")
+ image_c = image
board_raw = []
board_raw = sum(board_raw, [])
### Show color distribution
- luma = [s[0] for s in board_raw]
- saturation = [s[1] for s in board_raw]
if show_all:
import matplotlib.pyplot as pyplot
- import Image
+ from PIL import Image
fig = pyplot.figure(figsize=(8, 6))
+ luma = [s[0] for s in board_raw]
+ saturation = [s[1] for s in board_raw]
pyplot.scatter(luma, saturation,
- color=[(s[2][0]/255.,
- s[2][1]/255.,
- s[2][2]/255., 1.)
- for s in board_raw])
+ color=[s[2] for s in board_raw])
pyplot.xlim(0,1)
pyplot.ylim(0,1)
fig.canvas.draw()
image_p = Image.fromstring('RGB', size, buff, 'raw')
do_something(image_p, "color distribution")
- clusters = k_means.cluster(3, 2,zip(zip(luma, saturation), range(len(luma))),
- [[0., 0.5], [0.5, 0.5], [1., 0.5]])
-
+ #max_s0 = max(s[0] for s in board_raw)
+ #min_s0 = min(s[0] for s in board_raw)
+ #norm_s0 = lambda x: (x - min_s0) / (max_s0 - min_s0)
+ #max_s1 = max(s[1] for s in board_raw)
+ #min_s1 = min(s[1] for s in board_raw)
+ #norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
+ #max_s1 = max(s[1] for s in board_raw)
+ #min_s1 = min(s[1] for s in board_raw)
+ #norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
+ #color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw]
+ color_data = [(s[0], s[1]) for s in board_raw]
+
+ init_x = sum(c[0] for c in color_data) / float(len(color_data))
+
+ clusters, score = k_means.cluster(3, 2,zip(color_data, range(len(color_data))),
+ [[0., 0.5], [init_x, 0.5], [1., 0.5]])
+# clusters1, score1 = k_means.cluster(1, 2,zip(color_data, range(len(color_data))),
+# [[0.5, 0.5]])
+# clusters2, score2 = k_means.cluster(2, 2,zip(color_data, range(len(color_data))),
+# [[0., 0.5], [0.75, 0.5]])
+# import sys
+# print >> sys.stderr, score1, score2, score
+#
if show_all:
fig = pyplot.figure(figsize=(8, 6))
pyplot.scatter([d[0][0] for d in clusters[0]], [d[0][1] for d in clusters[0]],
except StopIteration:
pass
-
return output.Board(19, board_r)
def mean_luma(cluster):
- """Return mean luma of the *cluster* of points."""
+ """Return mean luminanace of the *cluster* of points."""
return sum(c[0][0] for c in cluster) / float(len(cluster))
+def to_general(line, size):
+ # TODO comment
+ (x1, y1), (x2, y2) = linef.line_from_angl_dist(line, size)
+ return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2)
+
+def intersection(l1, l2):
+ a1, b1, c1 = l1
+ a2, b2, c2 = l2
+ delim = float(a1 * b2 - b1 * a2)
+ x = (b1 * c2 - c1 * b2) / delim
+ y = (c1 * a2 - a1 * c2) / delim
+ return x, y
+
+# TODO remove the parameter get_all
def intersections_from_angl_dist(lines, size, get_all=True):
"""Take grid-lines and size of the image. Return intersections."""
+ lines0 = map(lambda l: to_general(l, size), lines[0])
+ lines1 = map(lambda l: to_general(l, size), lines[1])
intersections = []
- for (angl1, dist1) in lines[1]:
+ for l1 in lines1:
line = []
- for (angl2, dist2) in lines[0]:
- if abs(angl1 - angl2) > 0.4:
- i_x = (- ((dist2 / cos(angl2)) - (dist1 / cos(angl1)))
- / (tan(angl1) - tan(angl2)))
- i_y = (tan(angl1) * i_x) - (dist1 / cos(angl1))
- if get_all or (-size[0] / 2 < i_x < size[0] / 2 and
- -size[1] / 2 < i_y < size[1] / 2):
- line.append((int(i_x + size[0] / 2),
- int(i_y + size[1] / 2)))
+ for l2 in lines0:
+ line.append(intersection(l1, l2))
intersections.append(line)
return intersections
def rgb2lumsat(color):
- """Convert RGB to luma and HSI model saturation."""
+ """Convert RGB to luminance and HSI model saturation."""
r, g, b = color
luma = (0.30 * r + 0.59 * g + 0.11 * b) / 255.0
max_diff = max(color) - min(color)
pass
norm = float(len(points))
if norm == 0:
- return 0, 0, 0 #TODO trow exception here
+ return 0, 0, (0, 0, 0) #TODO trow exception here
+ norm = float(norm*255)
color = (sum(p[0] for p in points) / norm,
sum(p[1] for p in points) / norm,
sum(p[2] for p in points) / norm)
- luma, saturation = rgb2lumsat(color)
- return luma, saturation, color
+ hue, luma, saturation = colorsys.rgb_to_hls(*color)
+ color = colorsys.hls_to_rgb(hue, 0.5, 1.)
+ return luma, saturation, color, hue