1 """Imago intersections module."""
3 from math import cos, tan, pi
4 from operator import itemgetter
15 """Return normalized line."""
17 line = line[0] + pi, - line[1]
21 """Return lines sorted by distance."""
22 l_max = max(l[0] for l in lines)
23 l_min = min(l[0] for l in lines)
24 if l_max - l_min > (3. / 4) * pi:
25 lines = [dst(l) for l in lines]
26 lines.sort(key=itemgetter(1))
29 def board(image, lines, show_all, do_something):
30 """Compute intersections, find stone colors and return board situation."""
31 # TODO refactor show_all, do_something
32 # TODO refactor this into smaller functions
33 lines = [dst_sort(l) for l in lines]
34 an0 = (sum([l[0] for l in lines[0]]) / len(lines[0]) - pi / 2)
35 an1 = (sum([l[0] for l in lines[1]]) / len(lines[1]) - pi / 2)
37 lines = [lines[1], lines[0]]
39 intersections = intersections_from_angl_dist(lines, image.size)
42 image_g = image.copy()
43 draw = ImageDraw.Draw(image_g)
44 for line in intersections:
46 draw.point((x , y), fill=(120, 255, 120))
47 do_something(image_g, "intersections")
49 image_c = filters.color_enhance(image)
51 do_something(image_c, "white balance")
55 for line in intersections:
56 board_raw.append([stone_color_raw(image_c, intersection) for intersection in
58 board_raw = sum(board_raw, [])
60 ### Show color distribution
63 import matplotlib.pyplot as pyplot
65 fig = pyplot.figure(figsize=(8, 6))
66 luma = [s[0] for s in board_raw]
67 saturation = [s[1] for s in board_raw]
68 pyplot.scatter(luma, saturation,
69 color=[s[2] for s in board_raw])
73 size = fig.canvas.get_width_height()
74 buff = fig.canvas.tostring_rgb()
75 image_p = Image.fromstring('RGB', size, buff, 'raw')
76 do_something(image_p, "color distribution")
78 max_s0 = max(s[0] for s in board_raw)
79 min_s0 = min(s[0] for s in board_raw)
80 norm_s0 = lambda x: (x - min_s0) / (max_s0 - min_s0)
81 max_s1 = max(s[1] for s in board_raw)
82 min_s1 = min(s[1] for s in board_raw)
83 norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
84 color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw]
86 clusters = k_means.cluster(3, 2,zip(color_data, range(len(color_data))),
87 [[0., 0.5], [0.5, 0.5], [1., 0.5]])
90 fig = pyplot.figure(figsize=(8, 6))
91 pyplot.scatter([d[0][0] for d in clusters[0]], [d[0][1] for d in clusters[0]],
93 pyplot.scatter([d[0][0] for d in clusters[1]], [d[0][1] for d in clusters[1]],
95 pyplot.scatter([d[0][0] for d in clusters[2]], [d[0][1] for d in clusters[2]],
100 size = fig.canvas.get_width_height()
101 buff = fig.canvas.tostring_rgb()
102 image_p = Image.fromstring('RGB', size, buff, 'raw')
103 do_something(image_p, "color clustering")
105 clusters[0] = [(p[1], 'B') for p in clusters[0]]
106 clusters[1] = [(p[1], '.') for p in clusters[1]]
107 clusters[2] = [(p[1], 'W') for p in clusters[2]]
109 board_rl = sum(clusters, [])
111 board_rg = (p[1] for p in board_rl)
115 #TODO 19 should be a size parameter
119 board_r.append(board_rg.next())
120 except StopIteration:
124 return output.Board(19, board_r)
126 def mean_luma(cluster):
127 """Return mean luminanace of the *cluster* of points."""
128 return sum(c[0][0] for c in cluster) / float(len(cluster))
130 def to_general(line, size):
132 (x1, y1), (x2, y2) = linef.line_from_angl_dist(line, size)
133 return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2)
135 def intersection(l1, l2):
138 delim = float(a1 * b2 - b1 * a2)
139 x = (b1 * c2 - c1 * b2) / delim
140 y = (c1 * a2 - a1 * c2) / delim
143 # TODO remove the parameter get_all
144 def intersections_from_angl_dist(lines, size, get_all=True):
145 """Take grid-lines and size of the image. Return intersections."""
146 lines0 = map(lambda l: to_general(l, size), lines[0])
147 lines1 = map(lambda l: to_general(l, size), lines[1])
152 line.append(intersection(l1, l2))
153 intersections.append(line)
156 def rgb2lumsat(color):
157 """Convert RGB to luminance and HSI model saturation."""
159 luma = (0.30 * r + 0.59 * g + 0.11 * b) / 255.0
160 max_diff = max(color) - min(color)
164 saturation = 1. - ((3. * min(color)) / sum(color))
165 return luma, saturation
168 #TODO comment (or delete maybe?)
171 return (lst[len_lst / 2] + lst[len_lst / 2 + 1]) / 2.0
173 return lst[len_lst / 2]
175 def stone_color_raw(image, (x, y)):
176 """Given image and coordinates, return stone color."""
179 for i in range(-size, size + 1):
180 for j in range(-size, size + 1):
182 points.append(image.getpixel((x + i, y + j)))
185 norm = float(len(points))
187 return 0, 0, (0, 0, 0) #TODO trow exception here
188 norm = float(norm*255)
189 color = (sum(p[0] for p in points) / norm,
190 sum(p[1] for p in points) / norm,
191 sum(p[2] for p in points) / norm)
192 hue, luma, saturation = colorsys.rgb_to_hls(*color)
193 return luma, saturation, color