From: TomᚠMusil Date: Sat, 13 Dec 2014 06:50:35 +0000 (+0100) Subject: alpha equivalence X-Git-Url: http://git.tomasm.cz/fp.git/commitdiff_plain/85035d87c92c67f7be4876efec76c8f0cee360fc?hp=6429a37e59f5616e7d3091a0317d82d073401d55 alpha equivalence --- diff --git a/src/Lambda.hs b/src/Lambda.hs index 199d7a8..07d1f4b 100644 --- a/src/Lambda.hs +++ b/src/Lambda.hs @@ -35,9 +35,12 @@ import Control.Monad.State -- >>> import Control.Applicative -- >>> let aVarName = oneof . map (pure . (:[])) $ ['a'..'e'] -- >>> let aVar = liftA Var aVarName +-- >>> let aComb = oneof . map pure $ [cS, cK, cI, cY] -- >>> let aTerm 0 = aVar --- >>> let aTerm n = oneof [aVar, liftA2 Lambda aVarName $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] +-- >>> let aTerm n = oneof [aVar, aComb, liftA2 Lambda aVarName $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] -- >>> instance Arbitrary Term where arbitrary = sized aTerm +-- +-- TODO: shrink Terms cP :: Term cP = tRead "(λa d c.(λa.e) b (λc.d)) ((λa.(λd.a) (λd c.b ((λa.a) a)) (a ((λa.(λd.e) ((λe.(λd b.a) (λa c.(λa a d.(λd.b (λa d.c) e) (λb b.c a (a d (λb d d e a.d (λb b.d))))) ((λb.a) c)) (d ((λc.(λd.a (λe.e)) (c d)) ((λe.b) a))) c (λa.d (e (λe.(λd c.b) a))) (c (b a)) a (λe.(λa b e b a.d) b)) ((λe.b) (λa.b)) ((λe d.b) b) e) b) ((λc c.a e) (λb.(λb.e) a)))) (λe.e) b (λd c e e c a.c)) a)" @@ -51,6 +54,9 @@ cI = tRead "λx.x" cK :: Term cK = tRead "λx y.x" +cS :: Term +cS = tRead "λx y z.x z (y z)" + type VarName = String -- | @@ -59,6 +65,16 @@ type VarName = String data Term = Var VarName | Lambda VarName Term | App Term Term deriving (Eq) +varnames :: [VarName] +varnames = map (:[]) ['a'..'z'] ++ [c : s | s <- varnames, c <- ['a'..'z']] + +alphaNorm :: Term -> Term +alphaNorm t = alpha varnames t + where + alpha (v:vs) (Lambda x t) = Lambda v . alpha vs $ substitute x (Var v) t + alpha vs (App u v) = App (alpha vs u) (alpha vs v) + alpha vs (Var x) = Var x + pattern RedEx x t s = App (Lambda x t) s pattern AppApp a b c = App a (App b c) pattern EmLambda x y t = Lambda x (Lambda y t) @@ -218,7 +234,7 @@ printT t = do -- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY) -- Just (λx.x) -- --- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (toNormalForm Lazy 1000 x) (toNormalForm Eager 1000 x) +-- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (alphaNorm <$> toNormalForm Lazy 1000 x) (alphaNorm <$> toNormalForm Eager 1000 x) toNormalForm :: Strategy -> Int -> Term -> Maybe Term