X-Git-Url: http://git.tomasm.cz/fp.git/blobdiff_plain/e26e565842cd4c347f93b3bbf1a4363f05d1cc2f..891001c31cd71632b828e79248e82f6fcda5dc3f:/src/Lambda.hs diff --git a/src/Lambda.hs b/src/Lambda.hs index 5c3ecda..3026b75 100644 --- a/src/Lambda.hs +++ b/src/Lambda.hs @@ -14,42 +14,29 @@ module Lambda ( -- * Types VarName , Term(..) + , pattern RedEx -- * Reduction , alphaNorm , reduce , toNormalForm , Strategy(..) ) where - import Control.Monad.State import Lambda.Term -- $setup --- >>> import Test.QuickCheck -- >>> import Control.Applicative -- >>> import Lambda.Parser.Fancy --- >>> import Lambda.Term --- >>> let cP = tRead "(λa d c.(λa.e) b (λc.d)) ((λa.(λd.a) (λd c.b ((λa.a) a)) (a ((λa.(λd.e) ((λe.(λd b.a) (λa c.(λa a d.(λd.b (λa d.c) e) (λb b.c a (a d (λb d d e a.d (λb b.d))))) ((λb.a) c)) (d ((λc.(λd.a (λe.e)) (c d)) ((λe.b) a))) c (λa.d (e (λe.(λd c.b) a))) (c (b a)) a (λe.(λa b e b a.d) b)) ((λe.b) (λa.b)) ((λe d.b) b) e) b) ((λc c.a e) (λb.(λb.e) a)))) (λe.e) b (λd c e e c a.c)) a)" --- >>> cY = tRead "λf.(λx.f (x x)) (λx.f (x x))" --- >>> cI = tRead "λx.x" --- >>> cK = tRead "λx y.x" --- >>> cS = tRead "λx y z.x z (y z)" --- >>> let aVarName = oneof . map (pure . (:[])) $ ['a'..'e'] --- >>> let aVar = liftA Var aVarName --- >>> let aComb = oneof . map pure $ [cS, cK, cI, cY] --- >>> let aTerm 0 = aVar --- >>> let aTerm n = oneof [aVar, aComb, liftA2 Lambda aVarName $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] --- >>> instance Arbitrary Term where arbitrary = sized aTerm --- --- TODO: shrink Terms +-- >>> import Test.Term +-- >>> import Test.QuickCheck varnames :: [VarName] varnames = map (:[]) ['a'..'z'] ++ [c : s | s <- varnames, c <- ['a'..'z']] alphaNorm :: Term -> Term -alphaNorm t = alpha varnames t +alphaNorm = alpha varnames where alpha (v:vs) (Lambda x r) = Lambda v . alpha vs $ substitute x (Var v) r alpha vs (App u v) = App (alpha vs u) (alpha vs v) @@ -89,9 +76,9 @@ reduce (App t u) = app (reduce t) u data Strategy = Eager | Lazy -reduceStep :: (Monad m) => Term -> m Term -reduceStep (RedEx x s t) = return $ substitute x t s -reduceStep t = return $ t +reduceStep :: Term -> Term +reduceStep (RedEx x s t) = substitute x t s +reduceStep t = t data Z = R Term Z | L Z Term | ZL VarName Z | E data D = Up | Down @@ -110,12 +97,14 @@ unmove :: TermZipper -> TermZipper unmove (t, L c r, Down) = (App t r, c, Down) unmove x = x +-- getTerm :: TermZipper -> Term + travPost :: (Monad m) => (Term -> m Term) -> Term -> m Term travPost fnc term = tr fnc (term, E, Down) where - tr f (t@(RedEx _ _ _), c, Up) = do + tr f (t@RedEx{}, c, Up) = do nt <- f t - tr f $ (nt, c, Down) + tr f (nt, c, Down) tr _ (t, E, Up) = return t tr f (t, c, Up) = tr f $ move (t, c, Up) tr f (t, c, Down) = tr f $ move (t, c, Down) @@ -123,20 +112,13 @@ travPost fnc term = tr fnc (term, E, Down) travPre :: (Monad m) => (Term -> m Term) -> Term -> m Term travPre fnc term = tr fnc (term, E, Down) where - tr f (t@(RedEx _ _ _), c, Down) = do + tr f (t@RedEx{}, c, Down) = do nt <- f t tr f $ unmove (nt, c, Down) tr _ (t, E, Up) = return t tr f (t, c, Up) = tr f $ move (t, c, Up) tr f (t, c, Down) = tr f $ move (t, c, Down) -{- -printT :: Term -> IO Term -printT t = do - print t - return t --} - -- | -- -- >>> toNormalForm Eager 100 cI @@ -151,15 +133,16 @@ printT t = do -- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY) -- Just (λx.x) -- --- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (alphaNorm <$> toNormalForm Lazy 1000 x) (alphaNorm <$> toNormalForm Eager 1000 x) +-- prop> within 10000000 $ (\ t u -> t == u || t == Nothing || u == Nothing) (alphaNorm <$> toNormalForm Lazy 1000 x) (alphaNorm <$> toNormalForm Eager 1000 x) +-- inf = tRead "(\\d.a ((\\d c.c d c) (\\x y z.x z (y z)) (\\f.(\\x.f (x x)) (\\x.f (x x))) e))" toNormalForm :: Strategy -> Int -> Term -> Maybe Term -toNormalForm Eager n = flip evalStateT 0 . travPost (cnt >=> short n >=> reduceStep) -toNormalForm Lazy n = flip evalStateT 0 . travPre (cnt >=> short n >=> reduceStep) +toNormalForm Eager n = flip evalStateT 0 . travPost (cnt >=> short n >=> return . reduceStep) +toNormalForm Lazy n = flip evalStateT 0 . travPre (cnt >=> short n >=> return . reduceStep) cnt :: (Monad m) => Term -> StateT Int m Term -cnt t@(RedEx _ _ _) = do +cnt t@RedEx{} = do modify (+ 1) return t cnt t = return t