X-Git-Url: http://git.tomasm.cz/fp.git/blobdiff_plain/801f0c270025ca872a488690aca42b59eeee89aa..8116a4989a7f9664ff2b4d07c705937f1aae1915:/src/Lambda.hs diff --git a/src/Lambda.hs b/src/Lambda.hs index f54a100..3026b75 100644 --- a/src/Lambda.hs +++ b/src/Lambda.hs @@ -1,91 +1,47 @@ -{-# OPTIONS_GHC -fno-warn-unused-do-bind #-} {-# LANGUAGE PatternSynonyms #-} -module Lambda where +-- | +-- Module : Lambda +-- Copyright : Tomáš Musil 2014 +-- License : BSD-3 +-- +-- Maintainer : tomik.musil@gmail.com +-- Stability : experimental +-- +-- This is a toy λ-calculus implementation. -import Data.Text as T -import Data.Attoparsec.Text -import Control.Applicative +module Lambda + ( -- * Types + VarName + , Term(..) + , pattern RedEx + -- * Reduction + , alphaNorm + , reduce + , toNormalForm + , Strategy(..) + ) where -type VarName = String -data Term = Var VarName | Lambda VarName Term | App Term Term deriving (Eq) +import Control.Monad.State -pattern RedEx x t s = App (Lambda x t) s -pattern AppApp a b c = App a (App b c) -pattern EmLambda x y t = Lambda x (Lambda y t) +import Lambda.Term -- $setup --- >>> import Test.QuickCheck -- >>> import Control.Applicative --- >>> let aTerm 0 = pure $ Var "x" --- >>> let aTerm n = oneof [pure (Var "x"), liftA (Lambda "x") $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] --- >>> instance Arbitrary Term where arbitrary = sized aTerm +-- >>> import Lambda.Parser.Fancy +-- >>> import Test.Term +-- >>> import Test.QuickCheck --- | Read and show λ-terms --- --- >>> print $ Lambda "x" (Var "x") --- (λx.x) --- --- prop> t == tRead (show (t :: Term)) - -instance Show Term where - show (Var x) = x - show (EmLambda x y t) = show (Lambda (x ++ " " ++ y) t) - show (Lambda x t) = "(λ" ++ x ++ "." ++ show t ++ ")" - show (AppApp a b c) = show a ++ " " ++ braced (App b c) - show (App t r) = show t ++ " " ++ show r - -braced :: Term -> String -braced t = "(" ++ show t ++ ")" - ---instance Read Term where -tRead :: String -> Term -tRead s = case parseOnly (parseTerm <* endOfInput) (T.pack s) of - (Right t) -> t - (Left e) -> error e - -parseVar :: Parser Term -parseVar = do - x <- many1 letter - return $! Var x - -parseLambda :: Parser Term -parseLambda = do - char '\\' <|> char 'λ' - vars <- sepBy1 parseVar (char ' ') - char '.' - t <- parseTerm - return $! createLambda vars t - -createLambda :: [Term] -> Term -> Term -createLambda (Var x : vs) t = Lambda x $ createLambda vs t -createLambda [] t = t -createLambda _ _ = error "createLambda failed" - -parseApp :: Parser Term -parseApp = do - aps <- sepBy1 (parseBraces <|> parseLambda <|> parseVar) (char ' ') - return $! createApp aps - -createApp :: [Term] -> Term -createApp [t] = t -createApp (t:ts:tss) = createApp (App t ts : tss) -createApp [] = error "empty createApp" - -parseBraces :: Parser Term -parseBraces = do - char '(' - t <- parseTerm - char ')' - return t - -parseTerm :: Parser Term -parseTerm = parseApp <|> - parseBraces <|> - parseLambda <|> - parseVar - -------------------------------------------------- +varnames :: [VarName] +varnames = map (:[]) ['a'..'z'] ++ [c : s | s <- varnames, c <- ['a'..'z']] + +alphaNorm :: Term -> Term +alphaNorm = alpha varnames + where + alpha (v:vs) (Lambda x r) = Lambda v . alpha vs $ substitute x (Var v) r + alpha vs (App u v) = App (alpha vs u) (alpha vs v) + alpha _ (Var x) = Var x + alpha [] _ = undefined isFreeIn :: VarName -> Term -> Bool isFreeIn x (Var v) = x == v @@ -106,9 +62,94 @@ substitute a b (Lambda x t) | otherwise = Lambda x (substitute a b t) substitute a b (App t u) = App (substitute a b t) (substitute a b u) +-- | Reduce λ-term +-- +-- >>> reduce $ tRead "(\\x.x x) (g f)" +-- g f (g f) + reduce :: Term -> Term reduce (Var x) = Var x reduce (Lambda x t) = Lambda x (reduce t) reduce (App t u) = app (reduce t) u where app (Lambda x v) w = reduce $ substitute x w v app a b = App a (reduce b) + +data Strategy = Eager | Lazy + +reduceStep :: Term -> Term +reduceStep (RedEx x s t) = substitute x t s +reduceStep t = t + +data Z = R Term Z | L Z Term | ZL VarName Z | E +data D = Up | Down +type TermZipper = (Term, Z, D) + +move :: TermZipper -> TermZipper +move (App l r, c, Down) = (l, L c r, Down) +move (Lambda x t, c, Down) = (t, ZL x c, Down) +move (Var x, c, Down) = (Var x, c, Up) +move (t, L c r, Up) = (r, R t c, Down) +move (t, R l c, Up) = (App l t, c, Up) +move (t, ZL x c, Up) = (Lambda x t, c, Up) +move (t, E, Up) = (t, E, Up) + +unmove :: TermZipper -> TermZipper +unmove (t, L c r, Down) = (App t r, c, Down) +unmove x = x + +-- getTerm :: TermZipper -> Term + +travPost :: (Monad m) => (Term -> m Term) -> Term -> m Term +travPost fnc term = tr fnc (term, E, Down) + where + tr f (t@RedEx{}, c, Up) = do + nt <- f t + tr f (nt, c, Down) + tr _ (t, E, Up) = return t + tr f (t, c, Up) = tr f $ move (t, c, Up) + tr f (t, c, Down) = tr f $ move (t, c, Down) + +travPre :: (Monad m) => (Term -> m Term) -> Term -> m Term +travPre fnc term = tr fnc (term, E, Down) + where + tr f (t@RedEx{}, c, Down) = do + nt <- f t + tr f $ unmove (nt, c, Down) + tr _ (t, E, Up) = return t + tr f (t, c, Up) = tr f $ move (t, c, Up) + tr f (t, c, Down) = tr f $ move (t, c, Down) + +-- | +-- +-- >>> toNormalForm Eager 100 cI +-- Just (λx.x) +-- +-- >>> toNormalForm Eager 100 $ App cI cI +-- Just (λx.x) +-- +-- >>> toNormalForm Eager 100 $ (App (App cK cI) cY) +-- Nothing +-- +-- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY) +-- Just (λx.x) +-- +-- prop> within 10000000 $ (\ t u -> t == u || t == Nothing || u == Nothing) (alphaNorm <$> toNormalForm Lazy 1000 x) (alphaNorm <$> toNormalForm Eager 1000 x) + +-- inf = tRead "(\\d.a ((\\d c.c d c) (\\x y z.x z (y z)) (\\f.(\\x.f (x x)) (\\x.f (x x))) e))" + +toNormalForm :: Strategy -> Int -> Term -> Maybe Term +toNormalForm Eager n = flip evalStateT 0 . travPost (cnt >=> short n >=> return . reduceStep) +toNormalForm Lazy n = flip evalStateT 0 . travPre (cnt >=> short n >=> return . reduceStep) + +cnt :: (Monad m) => Term -> StateT Int m Term +cnt t@RedEx{} = do + modify (+ 1) + return t +cnt t = return t + +short :: Int -> Term -> StateT Int Maybe Term +short maxN t = do + n <- get + if n > maxN + then lift Nothing + else return t