X-Git-Url: http://git.tomasm.cz/fp.git/blobdiff_plain/801f0c270025ca872a488690aca42b59eeee89aa..6429a37e59f5616e7d3091a0317d82d073401d55:/src/Lambda.hs diff --git a/src/Lambda.hs b/src/Lambda.hs index f54a100..199d7a8 100644 --- a/src/Lambda.hs +++ b/src/Lambda.hs @@ -1,32 +1,68 @@ {-# OPTIONS_GHC -fno-warn-unused-do-bind #-} {-# LANGUAGE PatternSynonyms #-} -module Lambda where - -import Data.Text as T +-- | +-- Module : Lambda +-- Copyright : Tomáš Musil 2014 +-- License : BSD-3 +-- +-- Maintainer : tomik.musil@gmail.com +-- Stability : experimental +-- +-- This is a toy λ-calculus implementation. + +module Lambda + ( -- * Types + VarName + , Term(..) + -- * Parsing terms + , parseTerm + , tRead + -- * Reduction + , reduce + , toNormalForm + , Strategy(..) + ) where + + +import Data.Text as T hiding (map) import Data.Attoparsec.Text import Control.Applicative +import Control.Monad.State + +-- $setup +-- >>> import Test.QuickCheck +-- >>> import Control.Applicative +-- >>> let aVarName = oneof . map (pure . (:[])) $ ['a'..'e'] +-- >>> let aVar = liftA Var aVarName +-- >>> let aTerm 0 = aVar +-- >>> let aTerm n = oneof [aVar, liftA2 Lambda aVarName $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] +-- >>> instance Arbitrary Term where arbitrary = sized aTerm + +cP :: Term +cP = tRead "(λa d c.(λa.e) b (λc.d)) ((λa.(λd.a) (λd c.b ((λa.a) a)) (a ((λa.(λd.e) ((λe.(λd b.a) (λa c.(λa a d.(λd.b (λa d.c) e) (λb b.c a (a d (λb d d e a.d (λb b.d))))) ((λb.a) c)) (d ((λc.(λd.a (λe.e)) (c d)) ((λe.b) a))) c (λa.d (e (λe.(λd c.b) a))) (c (b a)) a (λe.(λa b e b a.d) b)) ((λe.b) (λa.b)) ((λe d.b) b) e) b) ((λc c.a e) (λb.(λb.e) a)))) (λe.e) b (λd c e e c a.c)) a)" + +cY :: Term +cY = tRead "λf.(λx.f (x x)) (λx.f (x x))" + +cI :: Term +cI = tRead "λx.x" + +cK :: Term +cK = tRead "λx y.x" type VarName = String + +-- | +-- >>> print $ Lambda "x" (Var "x") +-- (λx.x) + data Term = Var VarName | Lambda VarName Term | App Term Term deriving (Eq) pattern RedEx x t s = App (Lambda x t) s pattern AppApp a b c = App a (App b c) pattern EmLambda x y t = Lambda x (Lambda y t) --- $setup --- >>> import Test.QuickCheck --- >>> import Control.Applicative --- >>> let aTerm 0 = pure $ Var "x" --- >>> let aTerm n = oneof [pure (Var "x"), liftA (Lambda "x") $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] --- >>> instance Arbitrary Term where arbitrary = sized aTerm - --- | Read and show λ-terms --- --- >>> print $ Lambda "x" (Var "x") --- (λx.x) --- --- prop> t == tRead (show (t :: Term)) instance Show Term where show (Var x) = x @@ -38,7 +74,9 @@ instance Show Term where braced :: Term -> String braced t = "(" ++ show t ++ ")" ---instance Read Term where +-- | +-- prop> t == tRead (show (t :: Term)) + tRead :: String -> Term tRead s = case parseOnly (parseTerm <* endOfInput) (T.pack s) of (Right t) -> t @@ -46,7 +84,7 @@ tRead s = case parseOnly (parseTerm <* endOfInput) (T.pack s) of parseVar :: Parser Term parseVar = do - x <- many1 letter + x <- many1 (letter <|> digit) return $! Var x parseLambda :: Parser Term @@ -106,9 +144,96 @@ substitute a b (Lambda x t) | otherwise = Lambda x (substitute a b t) substitute a b (App t u) = App (substitute a b t) (substitute a b u) +-- | Reduce λ-term +-- +-- >>> reduce $ tRead "(\\x.x x) (g f)" +-- g f (g f) + reduce :: Term -> Term reduce (Var x) = Var x reduce (Lambda x t) = Lambda x (reduce t) reduce (App t u) = app (reduce t) u where app (Lambda x v) w = reduce $ substitute x w v app a b = App a (reduce b) + +data Strategy = Eager | Lazy + +reduceStep :: (Monad m) => Term -> m Term +reduceStep (RedEx x s t) = return $ substitute x t s +reduceStep t = return $ t + +data Z = R Term Z | L Z Term | ZL VarName Z | E +data D = Up | Down +type TermZipper = (Term, Z, D) + +move :: TermZipper -> TermZipper +move (App l r, c, Down) = (l, L c r, Down) +move (Lambda x t, c, Down) = (t, ZL x c, Down) +move (Var x, c, Down) = (Var x, c, Up) +move (t, L c r, Up) = (r, R t c, Down) +move (t, R l c, Up) = (App l t, c, Up) +move (t, ZL x c, Up) = (Lambda x t, c, Up) +move (t, E, Up) = (t, E, Up) + +unmove :: TermZipper -> TermZipper +unmove (t, L c r, Down) = (App t r, c, Down) +unmove x = x + +travPost :: (Monad m) => (Term -> m Term) -> Term -> m Term +travPost fnc term = tr fnc (term, E, Down) + where + tr f (t@(RedEx _ _ _), c, Up) = do + nt <- f t + tr f $ (nt, c, Down) + tr _ (t, E, Up) = return t + tr f (t, c, Up) = tr f $ move (t, c, Up) + tr f (t, c, Down) = tr f $ move (t, c, Down) + +travPre :: (Monad m) => (Term -> m Term) -> Term -> m Term +travPre fnc term = tr fnc (term, E, Down) + where + tr f (t@(RedEx _ _ _), c, Down) = do + nt <- f t + tr f $ unmove (nt, c, Down) + tr _ (t, E, Up) = return t + tr f (t, c, Up) = tr f $ move (t, c, Up) + tr f (t, c, Down) = tr f $ move (t, c, Down) + +printT :: Term -> IO Term +printT t = do + print t + return t + +-- | +-- +-- >>> toNormalForm Eager 100 cI +-- Just (λx.x) +-- +-- >>> toNormalForm Eager 100 $ App cI cI +-- Just (λx.x) +-- +-- >>> toNormalForm Eager 100 $ (App (App cK cI) cY) +-- Nothing +-- +-- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY) +-- Just (λx.x) +-- +-- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (toNormalForm Lazy 1000 x) (toNormalForm Eager 1000 x) + + +toNormalForm :: Strategy -> Int -> Term -> Maybe Term +toNormalForm Eager n = flip evalStateT 0 . travPost (cnt >=> short n >=> reduceStep) +toNormalForm Lazy n = flip evalStateT 0 . travPre (cnt >=> short n >=> reduceStep) + +cnt :: (Monad m) => Term -> StateT Int m Term +cnt t@(RedEx _ _ _) = do + modify (+ 1) + return t +cnt t = return t + +short :: Int -> Term -> StateT Int Maybe Term +short maxN t = do + n <- get + if n > maxN + then lift Nothing + else return t