X-Git-Url: http://git.tomasm.cz/fp.git/blobdiff_plain/16e5b1e83c48bdaf47166d61c780dbbadfa79209..e26e565842cd4c347f93b3bbf1a4363f05d1cc2f:/src/Lambda.hs?ds=inline diff --git a/src/Lambda.hs b/src/Lambda.hs index f828f4d..5c3ecda 100644 --- a/src/Lambda.hs +++ b/src/Lambda.hs @@ -1,4 +1,3 @@ -{-# OPTIONS_GHC -fno-warn-unused-do-bind #-} {-# LANGUAGE PatternSynonyms #-} -- | @@ -15,108 +14,47 @@ module Lambda ( -- * Types VarName , Term(..) - -- * Parsing terms - , parseTerm - , tRead -- * Reduction + , alphaNorm , reduce + , toNormalForm + , Strategy(..) ) where -import Data.Text as T -import Data.Attoparsec.Text -import Control.Applicative import Control.Monad.State +import Lambda.Term + -- $setup -- >>> import Test.QuickCheck -- >>> import Control.Applicative --- >>> let aTerm 0 = liftA (Var . ("x" ++) . show) (arbitrary :: Gen Int) --- >>> let aTerm n = oneof [aTerm 0, liftA (Lambda "x") $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] +-- >>> import Lambda.Parser.Fancy +-- >>> import Lambda.Term +-- >>> let cP = tRead "(λa d c.(λa.e) b (λc.d)) ((λa.(λd.a) (λd c.b ((λa.a) a)) (a ((λa.(λd.e) ((λe.(λd b.a) (λa c.(λa a d.(λd.b (λa d.c) e) (λb b.c a (a d (λb d d e a.d (λb b.d))))) ((λb.a) c)) (d ((λc.(λd.a (λe.e)) (c d)) ((λe.b) a))) c (λa.d (e (λe.(λd c.b) a))) (c (b a)) a (λe.(λa b e b a.d) b)) ((λe.b) (λa.b)) ((λe d.b) b) e) b) ((λc c.a e) (λb.(λb.e) a)))) (λe.e) b (λd c e e c a.c)) a)" +-- >>> cY = tRead "λf.(λx.f (x x)) (λx.f (x x))" +-- >>> cI = tRead "λx.x" +-- >>> cK = tRead "λx y.x" +-- >>> cS = tRead "λx y z.x z (y z)" +-- >>> let aVarName = oneof . map (pure . (:[])) $ ['a'..'e'] +-- >>> let aVar = liftA Var aVarName +-- >>> let aComb = oneof . map pure $ [cS, cK, cI, cY] +-- >>> let aTerm 0 = aVar +-- >>> let aTerm n = oneof [aVar, aComb, liftA2 Lambda aVarName $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] -- >>> instance Arbitrary Term where arbitrary = sized aTerm +-- +-- TODO: shrink Terms -cY :: Term -cY = tRead "λf.(λx.f (x x)) (λx.f (x x))" - -cI :: Term -cI = tRead "λx.x" - -cK :: Term -cK = tRead "λx y.x" - -type VarName = String - --- | --- >>> print $ Lambda "x" (Var "x") --- (λx.x) - -data Term = EmptyT | Var VarName | Lambda VarName Term | App Term Term deriving (Eq) - -pattern RedEx x t s = App (Lambda x t) s -pattern AppApp a b c = App a (App b c) -pattern EmLambda x y t = Lambda x (Lambda y t) - - -instance Show Term where - show (Var x) = x - show (EmLambda x y t) = show (Lambda (x ++ " " ++ y) t) - show (Lambda x t) = "(λ" ++ x ++ "." ++ show t ++ ")" - show (AppApp a b c) = show a ++ " " ++ braced (App b c) - show (App t r) = show t ++ " " ++ show r +varnames :: [VarName] +varnames = map (:[]) ['a'..'z'] ++ [c : s | s <- varnames, c <- ['a'..'z']] -braced :: Term -> String -braced t = "(" ++ show t ++ ")" - --- | --- prop> t == tRead (show (t :: Term)) - -tRead :: String -> Term -tRead s = case parseOnly (parseTerm <* endOfInput) (T.pack s) of - (Right t) -> t - (Left e) -> error e - -parseVar :: Parser Term -parseVar = do - x <- many1 (letter <|> digit) - return $! Var x - -parseLambda :: Parser Term -parseLambda = do - char '\\' <|> char 'λ' - vars <- sepBy1 parseVar (char ' ') - char '.' - t <- parseTerm - return $! createLambda vars t - -createLambda :: [Term] -> Term -> Term -createLambda (Var x : vs) t = Lambda x $ createLambda vs t -createLambda [] t = t -createLambda _ _ = error "createLambda failed" - -parseApp :: Parser Term -parseApp = do - aps <- sepBy1 (parseBraces <|> parseLambda <|> parseVar) (char ' ') - return $! createApp aps - -createApp :: [Term] -> Term -createApp [t] = t -createApp (t:ts:tss) = createApp (App t ts : tss) -createApp [] = error "empty createApp" - -parseBraces :: Parser Term -parseBraces = do - char '(' - t <- parseTerm - char ')' - return t - -parseTerm :: Parser Term -parseTerm = parseApp <|> - parseBraces <|> - parseLambda <|> - parseVar - -------------------------------------------------- +alphaNorm :: Term -> Term +alphaNorm t = alpha varnames t + where + alpha (v:vs) (Lambda x r) = Lambda v . alpha vs $ substitute x (Var v) r + alpha vs (App u v) = App (alpha vs u) (alpha vs v) + alpha _ (Var x) = Var x + alpha [] _ = undefined isFreeIn :: VarName -> Term -> Bool isFreeIn x (Var v) = x == v @@ -155,20 +93,11 @@ reduceStep :: (Monad m) => Term -> m Term reduceStep (RedEx x s t) = return $ substitute x t s reduceStep t = return $ t -traversPost :: (Monad m) => (Term -> m Term) -> Term -> m Term -traversPost f (App t u) = do - nt <- traversPost f t - nu <- traversPost f u - case App nt nu of - l@(RedEx _ _ _) -> traversPost f =<< f l - r -> return r -traversPost f (Lambda x t) = return . Lambda x =<< traversPost f t -traversPost f (Var x) = return $ (Var x) - data Z = R Term Z | L Z Term | ZL VarName Z | E data D = Up | Down -data Zip = Zip Z Term +type TermZipper = (Term, Z, D) +move :: TermZipper -> TermZipper move (App l r, c, Down) = (l, L c r, Down) move (Lambda x t, c, Down) = (t, ZL x c, Down) move (Var x, c, Down) = (Var x, c, Up) @@ -177,18 +106,17 @@ move (t, R l c, Up) = (App l t, c, Up) move (t, ZL x c, Up) = (Lambda x t, c, Up) move (t, E, Up) = (t, E, Up) +unmove :: TermZipper -> TermZipper unmove (t, L c r, Down) = (App t r, c, Down) unmove x = x -getF (t, _, _) = t - travPost :: (Monad m) => (Term -> m Term) -> Term -> m Term travPost fnc term = tr fnc (term, E, Down) where tr f (t@(RedEx _ _ _), c, Up) = do nt <- f t tr f $ (nt, c, Down) - tr f (t, E, Up) = return t + tr _ (t, E, Up) = return t tr f (t, c, Up) = tr f $ move (t, c, Up) tr f (t, c, Down) = tr f $ move (t, c, Down) @@ -198,14 +126,16 @@ travPre fnc term = tr fnc (term, E, Down) tr f (t@(RedEx _ _ _), c, Down) = do nt <- f t tr f $ unmove (nt, c, Down) - tr f (t, E, Up) = return t + tr _ (t, E, Up) = return t tr f (t, c, Up) = tr f $ move (t, c, Up) tr f (t, c, Down) = tr f $ move (t, c, Down) +{- printT :: Term -> IO Term printT t = do print t return t +-} -- | -- @@ -215,13 +145,13 @@ printT t = do -- >>> toNormalForm Eager 100 $ App cI cI -- Just (λx.x) -- --- >>> toNormalForm Eager 1000 $ (App (App cK cI) cY) +-- >>> toNormalForm Eager 100 $ (App (App cK cI) cY) -- Nothing -- --- >>> toNormalForm Lazy 1000 $ (App (App cK cI) cY) +-- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY) -- Just (λx.x) -- --- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (toNormalForm Lazy 1000 x) (toNormalForm Eager 1000 x) +-- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (alphaNorm <$> toNormalForm Lazy 1000 x) (alphaNorm <$> toNormalForm Eager 1000 x) toNormalForm :: Strategy -> Int -> Term -> Maybe Term @@ -235,8 +165,8 @@ cnt t@(RedEx _ _ _) = do cnt t = return t short :: Int -> Term -> StateT Int Maybe Term -short max t = do +short maxN t = do n <- get - if n > max + if n > maxN then lift Nothing else return t