X-Git-Url: http://git.tomasm.cz/fp.git/blobdiff_plain/16e5b1e83c48bdaf47166d61c780dbbadfa79209..85035d87c92c67f7be4876efec76c8f0cee360fc:/src/Lambda.hs?ds=inline diff --git a/src/Lambda.hs b/src/Lambda.hs index f828f4d..07d1f4b 100644 --- a/src/Lambda.hs +++ b/src/Lambda.hs @@ -20,10 +20,12 @@ module Lambda , tRead -- * Reduction , reduce + , toNormalForm + , Strategy(..) ) where -import Data.Text as T +import Data.Text as T hiding (map) import Data.Attoparsec.Text import Control.Applicative import Control.Monad.State @@ -31,9 +33,17 @@ import Control.Monad.State -- $setup -- >>> import Test.QuickCheck -- >>> import Control.Applicative --- >>> let aTerm 0 = liftA (Var . ("x" ++) . show) (arbitrary :: Gen Int) --- >>> let aTerm n = oneof [aTerm 0, liftA (Lambda "x") $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] +-- >>> let aVarName = oneof . map (pure . (:[])) $ ['a'..'e'] +-- >>> let aVar = liftA Var aVarName +-- >>> let aComb = oneof . map pure $ [cS, cK, cI, cY] +-- >>> let aTerm 0 = aVar +-- >>> let aTerm n = oneof [aVar, aComb, liftA2 Lambda aVarName $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] -- >>> instance Arbitrary Term where arbitrary = sized aTerm +-- +-- TODO: shrink Terms + +cP :: Term +cP = tRead "(λa d c.(λa.e) b (λc.d)) ((λa.(λd.a) (λd c.b ((λa.a) a)) (a ((λa.(λd.e) ((λe.(λd b.a) (λa c.(λa a d.(λd.b (λa d.c) e) (λb b.c a (a d (λb d d e a.d (λb b.d))))) ((λb.a) c)) (d ((λc.(λd.a (λe.e)) (c d)) ((λe.b) a))) c (λa.d (e (λe.(λd c.b) a))) (c (b a)) a (λe.(λa b e b a.d) b)) ((λe.b) (λa.b)) ((λe d.b) b) e) b) ((λc c.a e) (λb.(λb.e) a)))) (λe.e) b (λd c e e c a.c)) a)" cY :: Term cY = tRead "λf.(λx.f (x x)) (λx.f (x x))" @@ -44,13 +54,26 @@ cI = tRead "λx.x" cK :: Term cK = tRead "λx y.x" +cS :: Term +cS = tRead "λx y z.x z (y z)" + type VarName = String -- | -- >>> print $ Lambda "x" (Var "x") -- (λx.x) -data Term = EmptyT | Var VarName | Lambda VarName Term | App Term Term deriving (Eq) +data Term = Var VarName | Lambda VarName Term | App Term Term deriving (Eq) + +varnames :: [VarName] +varnames = map (:[]) ['a'..'z'] ++ [c : s | s <- varnames, c <- ['a'..'z']] + +alphaNorm :: Term -> Term +alphaNorm t = alpha varnames t + where + alpha (v:vs) (Lambda x t) = Lambda v . alpha vs $ substitute x (Var v) t + alpha vs (App u v) = App (alpha vs u) (alpha vs v) + alpha vs (Var x) = Var x pattern RedEx x t s = App (Lambda x t) s pattern AppApp a b c = App a (App b c) @@ -155,20 +178,11 @@ reduceStep :: (Monad m) => Term -> m Term reduceStep (RedEx x s t) = return $ substitute x t s reduceStep t = return $ t -traversPost :: (Monad m) => (Term -> m Term) -> Term -> m Term -traversPost f (App t u) = do - nt <- traversPost f t - nu <- traversPost f u - case App nt nu of - l@(RedEx _ _ _) -> traversPost f =<< f l - r -> return r -traversPost f (Lambda x t) = return . Lambda x =<< traversPost f t -traversPost f (Var x) = return $ (Var x) - data Z = R Term Z | L Z Term | ZL VarName Z | E data D = Up | Down -data Zip = Zip Z Term +type TermZipper = (Term, Z, D) +move :: TermZipper -> TermZipper move (App l r, c, Down) = (l, L c r, Down) move (Lambda x t, c, Down) = (t, ZL x c, Down) move (Var x, c, Down) = (Var x, c, Up) @@ -177,18 +191,17 @@ move (t, R l c, Up) = (App l t, c, Up) move (t, ZL x c, Up) = (Lambda x t, c, Up) move (t, E, Up) = (t, E, Up) +unmove :: TermZipper -> TermZipper unmove (t, L c r, Down) = (App t r, c, Down) unmove x = x -getF (t, _, _) = t - travPost :: (Monad m) => (Term -> m Term) -> Term -> m Term travPost fnc term = tr fnc (term, E, Down) where tr f (t@(RedEx _ _ _), c, Up) = do nt <- f t tr f $ (nt, c, Down) - tr f (t, E, Up) = return t + tr _ (t, E, Up) = return t tr f (t, c, Up) = tr f $ move (t, c, Up) tr f (t, c, Down) = tr f $ move (t, c, Down) @@ -198,7 +211,7 @@ travPre fnc term = tr fnc (term, E, Down) tr f (t@(RedEx _ _ _), c, Down) = do nt <- f t tr f $ unmove (nt, c, Down) - tr f (t, E, Up) = return t + tr _ (t, E, Up) = return t tr f (t, c, Up) = tr f $ move (t, c, Up) tr f (t, c, Down) = tr f $ move (t, c, Down) @@ -215,13 +228,13 @@ printT t = do -- >>> toNormalForm Eager 100 $ App cI cI -- Just (λx.x) -- --- >>> toNormalForm Eager 1000 $ (App (App cK cI) cY) +-- >>> toNormalForm Eager 100 $ (App (App cK cI) cY) -- Nothing -- --- >>> toNormalForm Lazy 1000 $ (App (App cK cI) cY) +-- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY) -- Just (λx.x) -- --- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (toNormalForm Lazy 1000 x) (toNormalForm Eager 1000 x) +-- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (alphaNorm <$> toNormalForm Lazy 1000 x) (alphaNorm <$> toNormalForm Eager 1000 x) toNormalForm :: Strategy -> Int -> Term -> Maybe Term @@ -235,8 +248,8 @@ cnt t@(RedEx _ _ _) = do cnt t = return t short :: Int -> Term -> StateT Int Maybe Term -short max t = do +short maxN t = do n <- get - if n > max + if n > maxN then lift Nothing else return t