X-Git-Url: http://git.tomasm.cz/fp.git/blobdiff_plain/0ab32fcedd87264abc88474b62f4c2e22ddf200b..6429a37e59f5616e7d3091a0317d82d073401d55:/src/Lambda.hs diff --git a/src/Lambda.hs b/src/Lambda.hs index f89cc7e..199d7a8 100644 --- a/src/Lambda.hs +++ b/src/Lambda.hs @@ -20,10 +20,12 @@ module Lambda , tRead -- * Reduction , reduce + , toNormalForm + , Strategy(..) ) where -import Data.Text as T +import Data.Text as T hiding (map) import Data.Attoparsec.Text import Control.Applicative import Control.Monad.State @@ -31,10 +33,24 @@ import Control.Monad.State -- $setup -- >>> import Test.QuickCheck -- >>> import Control.Applicative --- >>> let aTerm 0 = pure $ Var "x" --- >>> let aTerm n = oneof [pure (Var "x"), liftA (Lambda "x") $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] +-- >>> let aVarName = oneof . map (pure . (:[])) $ ['a'..'e'] +-- >>> let aVar = liftA Var aVarName +-- >>> let aTerm 0 = aVar +-- >>> let aTerm n = oneof [aVar, liftA2 Lambda aVarName $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))] -- >>> instance Arbitrary Term where arbitrary = sized aTerm +cP :: Term +cP = tRead "(λa d c.(λa.e) b (λc.d)) ((λa.(λd.a) (λd c.b ((λa.a) a)) (a ((λa.(λd.e) ((λe.(λd b.a) (λa c.(λa a d.(λd.b (λa d.c) e) (λb b.c a (a d (λb d d e a.d (λb b.d))))) ((λb.a) c)) (d ((λc.(λd.a (λe.e)) (c d)) ((λe.b) a))) c (λa.d (e (λe.(λd c.b) a))) (c (b a)) a (λe.(λa b e b a.d) b)) ((λe.b) (λa.b)) ((λe d.b) b) e) b) ((λc c.a e) (λb.(λb.e) a)))) (λe.e) b (λd c e e c a.c)) a)" + +cY :: Term +cY = tRead "λf.(λx.f (x x)) (λx.f (x x))" + +cI :: Term +cI = tRead "λx.x" + +cK :: Term +cK = tRead "λx y.x" + type VarName = String -- | @@ -68,7 +84,7 @@ tRead s = case parseOnly (parseTerm <* endOfInput) (T.pack s) of parseVar :: Parser Term parseVar = do - x <- many1 letter + x <- many1 (letter <|> digit) return $! Var x parseLambda :: Parser Term @@ -146,21 +162,68 @@ reduceStep :: (Monad m) => Term -> m Term reduceStep (RedEx x s t) = return $ substitute x t s reduceStep t = return $ t -traversPost :: (Monad m) => (Term -> m Term) -> Term -> m Term -traversPost f (App t u) = do - nt <- traversPost f t - nu <- traversPost f u - f (App nt nu) -traversPost f (Lambda x t) = f . Lambda x =<< traversPost f t -traversPost f (Var x) = f (Var x) +data Z = R Term Z | L Z Term | ZL VarName Z | E +data D = Up | Down +type TermZipper = (Term, Z, D) + +move :: TermZipper -> TermZipper +move (App l r, c, Down) = (l, L c r, Down) +move (Lambda x t, c, Down) = (t, ZL x c, Down) +move (Var x, c, Down) = (Var x, c, Up) +move (t, L c r, Up) = (r, R t c, Down) +move (t, R l c, Up) = (App l t, c, Up) +move (t, ZL x c, Up) = (Lambda x t, c, Up) +move (t, E, Up) = (t, E, Up) + +unmove :: TermZipper -> TermZipper +unmove (t, L c r, Down) = (App t r, c, Down) +unmove x = x + +travPost :: (Monad m) => (Term -> m Term) -> Term -> m Term +travPost fnc term = tr fnc (term, E, Down) + where + tr f (t@(RedEx _ _ _), c, Up) = do + nt <- f t + tr f $ (nt, c, Down) + tr _ (t, E, Up) = return t + tr f (t, c, Up) = tr f $ move (t, c, Up) + tr f (t, c, Down) = tr f $ move (t, c, Down) + +travPre :: (Monad m) => (Term -> m Term) -> Term -> m Term +travPre fnc term = tr fnc (term, E, Down) + where + tr f (t@(RedEx _ _ _), c, Down) = do + nt <- f t + tr f $ unmove (nt, c, Down) + tr _ (t, E, Up) = return t + tr f (t, c, Up) = tr f $ move (t, c, Up) + tr f (t, c, Down) = tr f $ move (t, c, Down) printT :: Term -> IO Term printT t = do print t return t +-- | +-- +-- >>> toNormalForm Eager 100 cI +-- Just (λx.x) +-- +-- >>> toNormalForm Eager 100 $ App cI cI +-- Just (λx.x) +-- +-- >>> toNormalForm Eager 100 $ (App (App cK cI) cY) +-- Nothing +-- +-- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY) +-- Just (λx.x) +-- +-- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (toNormalForm Lazy 1000 x) (toNormalForm Eager 1000 x) + + toNormalForm :: Strategy -> Int -> Term -> Maybe Term -toNormalForm Eager n = flip evalStateT 0 . traversPost (short n >=> cnt >=> reduceStep) +toNormalForm Eager n = flip evalStateT 0 . travPost (cnt >=> short n >=> reduceStep) +toNormalForm Lazy n = flip evalStateT 0 . travPre (cnt >=> short n >=> reduceStep) cnt :: (Monad m) => Term -> StateT Int m Term cnt t@(RedEx _ _ _) = do @@ -169,8 +232,8 @@ cnt t@(RedEx _ _ _) = do cnt t = return t short :: Int -> Term -> StateT Int Maybe Term -short max t = do +short maxN t = do n <- get - if n == max + if n > maxN then lift Nothing else return t