, tRead
-- * Reduction
, reduce
+ , toNormalForm
+ , Strategy(..)
) where
-import Data.Text as T
+import Data.Text as T hiding (map)
import Data.Attoparsec.Text
import Control.Applicative
import Control.Monad.State
-- $setup
-- >>> import Test.QuickCheck
-- >>> import Control.Applicative
--- >>> let aTerm 0 = liftA (Var . ("x" ++) . show) (arbitrary :: Gen Int)
--- >>> let aTerm n = oneof [aTerm 0, liftA (Lambda "x") $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))]
+-- >>> let aVarName = oneof . map (pure . (:[])) $ ['a'..'e']
+-- >>> let aVar = liftA Var aVarName
+-- >>> let aComb = oneof . map pure $ [cS, cK, cI, cY]
+-- >>> let aTerm 0 = aVar
+-- >>> let aTerm n = oneof [aVar, aComb, liftA2 Lambda aVarName $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))]
-- >>> instance Arbitrary Term where arbitrary = sized aTerm
+--
+-- TODO: shrink Terms
+
+cP :: Term
+cP = tRead "(λa d c.(λa.e) b (λc.d)) ((λa.(λd.a) (λd c.b ((λa.a) a)) (a ((λa.(λd.e) ((λe.(λd b.a) (λa c.(λa a d.(λd.b (λa d.c) e) (λb b.c a (a d (λb d d e a.d (λb b.d))))) ((λb.a) c)) (d ((λc.(λd.a (λe.e)) (c d)) ((λe.b) a))) c (λa.d (e (λe.(λd c.b) a))) (c (b a)) a (λe.(λa b e b a.d) b)) ((λe.b) (λa.b)) ((λe d.b) b) e) b) ((λc c.a e) (λb.(λb.e) a)))) (λe.e) b (λd c e e c a.c)) a)"
cY :: Term
cY = tRead "λf.(λx.f (x x)) (λx.f (x x))"
cK :: Term
cK = tRead "λx y.x"
+cS :: Term
+cS = tRead "λx y z.x z (y z)"
+
type VarName = String
-- |
-- >>> print $ Lambda "x" (Var "x")
-- (λx.x)
-data Term = EmptyT | Var VarName | Lambda VarName Term | App Term Term deriving (Eq)
+data Term = Var VarName | Lambda VarName Term | App Term Term deriving (Eq)
+
+varnames :: [VarName]
+varnames = map (:[]) ['a'..'z'] ++ [c : s | s <- varnames, c <- ['a'..'z']]
+
+alphaNorm :: Term -> Term
+alphaNorm t = alpha varnames t
+ where
+ alpha (v:vs) (Lambda x t) = Lambda v . alpha vs $ substitute x (Var v) t
+ alpha vs (App u v) = App (alpha vs u) (alpha vs v)
+ alpha vs (Var x) = Var x
pattern RedEx x t s = App (Lambda x t) s
pattern AppApp a b c = App a (App b c)
reduceStep (RedEx x s t) = return $ substitute x t s
reduceStep t = return $ t
-traversPost :: (Monad m) => (Term -> m Term) -> Term -> m Term
-traversPost f (App t u) = do
- nt <- traversPost f t
- nu <- traversPost f u
- case App nt nu of
- l@(RedEx _ _ _) -> traversPost f =<< f l
- r -> return r
-traversPost f (Lambda x t) = return . Lambda x =<< traversPost f t
-traversPost f (Var x) = return $ (Var x)
-
data Z = R Term Z | L Z Term | ZL VarName Z | E
data D = Up | Down
-data Zip = Zip Z Term
+type TermZipper = (Term, Z, D)
+move :: TermZipper -> TermZipper
move (App l r, c, Down) = (l, L c r, Down)
move (Lambda x t, c, Down) = (t, ZL x c, Down)
move (Var x, c, Down) = (Var x, c, Up)
move (t, ZL x c, Up) = (Lambda x t, c, Up)
move (t, E, Up) = (t, E, Up)
+unmove :: TermZipper -> TermZipper
unmove (t, L c r, Down) = (App t r, c, Down)
unmove x = x
-getF (t, _, _) = t
-
travPost :: (Monad m) => (Term -> m Term) -> Term -> m Term
travPost fnc term = tr fnc (term, E, Down)
where
tr f (t@(RedEx _ _ _), c, Up) = do
nt <- f t
tr f $ (nt, c, Down)
- tr f (t, E, Up) = return t
+ tr _ (t, E, Up) = return t
tr f (t, c, Up) = tr f $ move (t, c, Up)
tr f (t, c, Down) = tr f $ move (t, c, Down)
tr f (t@(RedEx _ _ _), c, Down) = do
nt <- f t
tr f $ unmove (nt, c, Down)
- tr f (t, E, Up) = return t
+ tr _ (t, E, Up) = return t
tr f (t, c, Up) = tr f $ move (t, c, Up)
tr f (t, c, Down) = tr f $ move (t, c, Down)
-- >>> toNormalForm Eager 100 $ App cI cI
-- Just (λx.x)
--
--- >>> toNormalForm Eager 1000 $ (App (App cK cI) cY)
+-- >>> toNormalForm Eager 100 $ (App (App cK cI) cY)
-- Nothing
--
--- >>> toNormalForm Lazy 1000 $ (App (App cK cI) cY)
+-- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY)
-- Just (λx.x)
--
--- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (toNormalForm Lazy 1000 x) (toNormalForm Eager 1000 x)
+-- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (alphaNorm <$> toNormalForm Lazy 1000 x) (alphaNorm <$> toNormalForm Eager 1000 x)
toNormalForm :: Strategy -> Int -> Term -> Maybe Term
cnt t = return t
short :: Int -> Term -> StateT Int Maybe Term
-short max t = do
+short maxN t = do
n <- get
- if n > max
+ if n > maxN
then lift Nothing
else return t