1 {-# OPTIONS_GHC -fno-warn-unused-do-bind #-}
2 {-# LANGUAGE PatternSynonyms #-}
6 -- Copyright : Tomáš Musil 2014
9 -- Maintainer : tomik.musil@gmail.com
10 -- Stability : experimental
12 -- This is a toy λ-calculus implementation.
27 import Data.Attoparsec.Text
28 import Control.Applicative
29 import Control.Monad.State
32 -- >>> import Test.QuickCheck
33 -- >>> import Control.Applicative
34 -- >>> let aTerm 0 = liftA (Var . ("x" ++) . show) (arbitrary :: Gen Int)
35 -- >>> let aTerm n = oneof [aTerm 0, liftA (Lambda "x") $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))]
36 -- >>> instance Arbitrary Term where arbitrary = sized aTerm
39 cY = tRead "λf.(λx.f (x x)) (λx.f (x x))"
50 -- >>> print $ Lambda "x" (Var "x")
53 data Term = EmptyT | Var VarName | Lambda VarName Term | App Term Term deriving (Eq)
55 pattern RedEx x t s = App (Lambda x t) s
56 pattern AppApp a b c = App a (App b c)
57 pattern EmLambda x y t = Lambda x (Lambda y t)
60 instance Show Term where
62 show (EmLambda x y t) = show (Lambda (x ++ " " ++ y) t)
63 show (Lambda x t) = "(λ" ++ x ++ "." ++ show t ++ ")"
64 show (AppApp a b c) = show a ++ " " ++ braced (App b c)
65 show (App t r) = show t ++ " " ++ show r
67 braced :: Term -> String
68 braced t = "(" ++ show t ++ ")"
71 -- prop> t == tRead (show (t :: Term))
73 tRead :: String -> Term
74 tRead s = case parseOnly (parseTerm <* endOfInput) (T.pack s) of
78 parseVar :: Parser Term
80 x <- many1 (letter <|> digit)
83 parseLambda :: Parser Term
85 char '\\' <|> char 'λ'
86 vars <- sepBy1 parseVar (char ' ')
89 return $! createLambda vars t
91 createLambda :: [Term] -> Term -> Term
92 createLambda (Var x : vs) t = Lambda x $ createLambda vs t
94 createLambda _ _ = error "createLambda failed"
96 parseApp :: Parser Term
98 aps <- sepBy1 (parseBraces <|> parseLambda <|> parseVar) (char ' ')
99 return $! createApp aps
101 createApp :: [Term] -> Term
103 createApp (t:ts:tss) = createApp (App t ts : tss)
104 createApp [] = error "empty createApp"
106 parseBraces :: Parser Term
113 parseTerm :: Parser Term
114 parseTerm = parseApp <|>
119 -------------------------------------------------
121 isFreeIn :: VarName -> Term -> Bool
122 isFreeIn x (Var v) = x == v
123 isFreeIn x (App t u) = x `isFreeIn` t || x `isFreeIn` u
124 isFreeIn x (Lambda v t) = x /= v && x `isFreeIn` t
126 rename :: Term -> Term
127 rename (Lambda x t) = Lambda n (substitute x (Var n) t)
129 rnm v = if (v ++ "r") `isFreeIn` t then rnm (v ++ "r") else v ++ "r"
130 rename _ = error "TODO vymyslet reprezentaci, kde pujde udelat fce, ktera bere jen Lambdy"
132 substitute :: VarName -> Term -> Term -> Term
133 substitute a b (Var x) = if x == a then b else Var x
134 substitute a b (Lambda x t)
135 | x == a = Lambda x t
136 | x `isFreeIn` b = substitute a b $ rename (Lambda x t)
137 | otherwise = Lambda x (substitute a b t)
138 substitute a b (App t u) = App (substitute a b t) (substitute a b u)
142 -- >>> reduce $ tRead "(\\x.x x) (g f)"
145 reduce :: Term -> Term
146 reduce (Var x) = Var x
147 reduce (Lambda x t) = Lambda x (reduce t)
148 reduce (App t u) = app (reduce t) u
149 where app (Lambda x v) w = reduce $ substitute x w v
150 app a b = App a (reduce b)
152 data Strategy = Eager | Lazy
154 reduceStep :: (Monad m) => Term -> m Term
155 reduceStep (RedEx x s t) = return $ substitute x t s
156 reduceStep t = return $ t
158 traversPost :: (Monad m) => (Term -> m Term) -> Term -> m Term
159 traversPost f (App t u) = do
160 nt <- traversPost f t
161 nu <- traversPost f u
163 l@(RedEx _ _ _) -> traversPost f =<< f l
165 traversPost f (Lambda x t) = return . Lambda x =<< traversPost f t
166 traversPost f (Var x) = return $ (Var x)
168 data Z = R Term Z | L Z Term | ZL VarName Z | E
170 data Zip = Zip Z Term
172 move (App l r, c, Down) = (l, L c r, Down)
173 move (Lambda x t, c, Down) = (t, ZL x c, Down)
174 move (Var x, c, Down) = (Var x, c, Up)
175 move (t, L c r, Up) = (r, R t c, Down)
176 move (t, R l c, Up) = (App l t, c, Up)
177 move (t, ZL x c, Up) = (Lambda x t, c, Up)
178 move (t, E, Up) = (t, E, Up)
180 unmove (t, L c r, Down) = (App t r, c, Down)
185 travPost :: (Monad m) => (Term -> m Term) -> Term -> m Term
186 travPost fnc term = tr fnc (term, E, Down)
188 tr f (t@(RedEx _ _ _), c, Up) = do
191 tr f (t, E, Up) = return t
192 tr f (t, c, Up) = tr f $ move (t, c, Up)
193 tr f (t, c, Down) = tr f $ move (t, c, Down)
195 travPre :: (Monad m) => (Term -> m Term) -> Term -> m Term
196 travPre fnc term = tr fnc (term, E, Down)
198 tr f (t@(RedEx _ _ _), c, Down) = do
200 tr f $ unmove (nt, c, Down)
201 tr f (t, E, Up) = return t
202 tr f (t, c, Up) = tr f $ move (t, c, Up)
203 tr f (t, c, Down) = tr f $ move (t, c, Down)
205 printT :: Term -> IO Term
212 -- >>> toNormalForm Eager 100 cI
215 -- >>> toNormalForm Eager 100 $ App cI cI
218 -- >>> toNormalForm Eager 1000 $ (App (App cK cI) cY)
221 -- >>> toNormalForm Lazy 1000 $ (App (App cK cI) cY)
224 -- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (toNormalForm Lazy 1000 x) (toNormalForm Eager 1000 x)
227 toNormalForm :: Strategy -> Int -> Term -> Maybe Term
228 toNormalForm Eager n = flip evalStateT 0 . travPost (cnt >=> short n >=> reduceStep)
229 toNormalForm Lazy n = flip evalStateT 0 . travPre (cnt >=> short n >=> reduceStep)
231 cnt :: (Monad m) => Term -> StateT Int m Term
232 cnt t@(RedEx _ _ _) = do
237 short :: Int -> Term -> StateT Int Maybe Term