1 {-# OPTIONS_GHC -fno-warn-unused-do-bind #-}
6 import Data.Attoparsec.Text
7 import Control.Applicative
10 data Term = Var VarName | Lambda VarName Term | App Term Term
12 instance Show Term where
14 show (Lambda x t) = "\\" ++ x ++ "." ++ show t
15 show (App t r) = "(" ++ show t ++ " " ++ show r ++ ")"
17 --instance Read Term where
18 tRead :: String -> Term
19 tRead s = case parseOnly (parseTerm <* endOfInput) (T.pack s) of
23 parseVar :: Parser Term
28 parseLambda :: Parser Term
31 vars <- sepBy1 parseVar (char ' ')
34 return $! createLambda vars t
36 createLambda :: [Term] -> Term -> Term
37 createLambda (Var x : vs) t = Lambda x $ createLambda vs t
39 createLambda _ _ = error "createLambda failed"
41 parseApp :: Parser Term
43 aps <- sepBy1 (parseBraces <|> parseLambda <|> parseVar) (char ' ')
44 return $! createApp aps
46 createApp :: [Term] -> Term
48 createApp (t:ts:tss) = createApp (App t ts : tss)
49 createApp [] = error "empty createApp"
51 parseBraces :: Parser Term
58 parseTerm :: Parser Term
59 parseTerm = parseApp <|>
64 -------------------------------------------------
66 isFreeIn :: VarName -> Term -> Bool
67 isFreeIn x (Var v) = x == v
68 isFreeIn x (App t u) = x `isFreeIn` t || x `isFreeIn` u
69 isFreeIn x (Lambda v t) = x /= v && x `isFreeIn` t
71 rename :: Term -> Term
72 rename (Lambda x t) = Lambda n (substitute x (Var n) t)
74 rnm v = if (v ++ "r") `isFreeIn` t then rnm (v ++ "r") else v ++ "r"
75 rename _ = error "TODO vymyslet reprezentaci, kde pujde udelat fce, ktera bere jen Lambdy"
77 substitute :: VarName -> Term -> Term -> Term
78 substitute a b (Var x) = if x == a then b else Var x
79 substitute a b (Lambda x t)
81 | x `isFreeIn` b = substitute a b $ rename (Lambda x t)
82 | otherwise = Lambda x (substitute a b t)
83 substitute a b (App t u) = App (substitute a b t) (substitute a b u)
85 reduce :: Term -> Term
86 reduce (Var x) = Var x
87 reduce (Lambda x t) = Lambda x (reduce t)
88 reduce (App t u) = app (reduce t) u
89 where app (Lambda x v) w = reduce $ substitute x w v
90 app a b = App a (reduce b)