1 {-# LANGUAGE PatternSynonyms #-}
5 -- Copyright : Tomáš Musil 2014
8 -- Maintainer : tomik.musil@gmail.com
9 -- Stability : experimental
11 -- This is a toy λ-calculus implementation.
25 import Control.Monad.State
30 -- >>> import Control.Applicative
31 -- >>> import Lambda.Parser.Fancy
32 -- >>> import Test.Term
33 -- >>> import Test.QuickCheck
36 varnames = map (:[]) ['a'..'z'] ++ [c : s | s <- varnames, c <- ['a'..'z']]
38 alphaNorm :: Term -> Term
39 alphaNorm = alpha varnames
41 alpha (v:vs) (Lambda x r) = Lambda v . alpha vs $ substitute x (Var v) r
42 alpha vs (App u v) = App (alpha vs u) (alpha vs v)
43 alpha _ (Var x) = Var x
44 alpha [] _ = undefined
46 isFreeIn :: VarName -> Term -> Bool
47 isFreeIn x (Var v) = x == v
48 isFreeIn x (App t u) = x `isFreeIn` t || x `isFreeIn` u
49 isFreeIn x (Lambda v t) = x /= v && x `isFreeIn` t
51 rename :: Term -> Term
52 rename (Lambda x t) = Lambda n (substitute x (Var n) t)
54 rnm v = if (v ++ "r") `isFreeIn` t then rnm (v ++ "r") else v ++ "r"
55 rename _ = error "TODO vymyslet reprezentaci, kde pujde udelat fce, ktera bere jen Lambdy"
57 substitute :: VarName -> Term -> Term -> Term
58 substitute a b (Var x) = if x == a then b else Var x
59 substitute a b (Lambda x t)
61 | x `isFreeIn` b = substitute a b $ rename (Lambda x t)
62 | otherwise = Lambda x (substitute a b t)
63 substitute a b (App t u) = App (substitute a b t) (substitute a b u)
67 -- >>> reduce $ tRead "(\\x.x x) (g f)"
70 reduce :: Term -> Term
71 reduce (Var x) = Var x
72 reduce (Lambda x t) = Lambda x (reduce t)
73 reduce (App t u) = app (reduce t) u
74 where app (Lambda x v) w = reduce $ substitute x w v
75 app a b = App a (reduce b)
77 data Strategy = Eager | Lazy
79 reduceStep :: Term -> Term
80 reduceStep (RedEx x s t) = substitute x t s
83 data Z = R Term Z | L Z Term | ZL VarName Z | E
85 type TermZipper = (Term, Z, D)
87 move :: TermZipper -> TermZipper
88 move (App l r, c, Down) = (l, L c r, Down)
89 move (Lambda x t, c, Down) = (t, ZL x c, Down)
90 move (Var x, c, Down) = (Var x, c, Up)
91 move (t, L c r, Up) = (r, R t c, Down)
92 move (t, R l c, Up) = (App l t, c, Up)
93 move (t, ZL x c, Up) = (Lambda x t, c, Up)
94 move (t, E, Up) = (t, E, Up)
96 unmove :: TermZipper -> TermZipper
97 unmove (t, L c r, Down) = (App t r, c, Down)
100 -- getTerm :: TermZipper -> Term
102 travPost :: (Monad m) => (Term -> m Term) -> Term -> m Term
103 travPost fnc term = tr fnc (term, E, Down)
105 tr f (t@RedEx{}, c, Up) = do
108 tr _ (t, E, Up) = return t
109 tr f (t, c, Up) = tr f $ move (t, c, Up)
110 tr f (t, c, Down) = tr f $ move (t, c, Down)
112 travPre :: (Monad m) => (Term -> m Term) -> Term -> m Term
113 travPre fnc term = tr fnc (term, E, Down)
115 tr f (t@RedEx{}, c, Down) = do
117 tr f $ unmove (nt, c, Down)
118 tr _ (t, E, Up) = return t
119 tr f (t, c, Up) = tr f $ move (t, c, Up)
120 tr f (t, c, Down) = tr f $ move (t, c, Down)
124 -- >>> toNormalForm Eager 100 cI
127 -- >>> toNormalForm Eager 100 $ App cI cI
130 -- >>> toNormalForm Eager 100 $ (App (App cK cI) cY)
133 -- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY)
136 -- prop> within 10000000 $ (\ t u -> t == u || t == Nothing || u == Nothing) (alphaNorm <$> toNormalForm Lazy 1000 x) (alphaNorm <$> toNormalForm Eager 1000 x)
138 -- inf = tRead "(\\d.a ((\\d c.c d c) (\\x y z.x z (y z)) (\\f.(\\x.f (x x)) (\\x.f (x x))) e))"
140 toNormalForm :: Strategy -> Int -> Term -> Maybe Term
141 toNormalForm Eager n = flip evalStateT 0 . travPost (cnt >=> short n >=> return . reduceStep)
142 toNormalForm Lazy n = flip evalStateT 0 . travPre (cnt >=> short n >=> return . reduceStep)
144 cnt :: (Monad m) => Term -> StateT Int m Term
150 short :: Int -> Term -> StateT Int Maybe Term